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BUCKLING AND POSTBUCKLING BEHAVIOR OF
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Abstract-The bifurcation buckling and postbuckling behavior of steep, compressible, circular arches is examined.
The arches are loaded with a uniform constant directional pressure and may be either pinned or clamped The
development is based on Koiter's theory. Two different arch theories are used so as to facilitate a study of bending
in the prebuckling state. It is shown that clamped arches are always unstable after bifurcation, while pinned
arches exhibit a transition from unstable to stable behavior as a semi-circular arch is approached. The results
are also compared to results obtained using shallow arch theory and the comparison is reasonably good for
moderately steep arches. The effect of middle surface extensibility (compressibility) and of the prebuckling bending
is virtually undetectable.

1. INTRODUCTION

THIS paper treats the bifurcation buckling and postbuckling behavior of steep, com­
pressible, circular arches under constant directional ("dead") pressure. A linearized treat·
ment of the buckling problem for inextensible arches has been given by Chwalla and
Kollbrunner [1]. The extensional buckling problem has been treated by Kammel [2J and
Dym [3], while the relationship between ring buckling and that of semi-circular arches
has been discussed by Singer and Babcock [4].

Implicit closed form (in terms of elliptical integrals) solutions for the postbuckling
behavior of inextensional circular rings have been given by Uvy [5] and Carrier [6].
Schmidt and Da Deppo [7] have given a rather complete set of arch equations, while
presenting some results for eccentrically loaded inextensional arches. Huddleston [8, 9]
has developed a numerical algorithm for a complete set ofcurved-beam equations and has
investigated the behavior of a number of arches of varying geometry under centrally
applied concentrated loads.

The present work presents analyses of the effect of prebuckling bending and of com­
pressibility on the buckling and postbuckling behavior of steep arches. The analyses are
based on the theory advanced by Koiter [10J, although the formalism developed by
Budiansky and Hutchinson [11-13J is used here.

Two different kinematic descriptions are used, the difference residing in the expression
for the curvature change. While the difference is small, it allows the inclusion of bending
during the prebuckling state (in one case), so that the significance of such bending can be
assessed.

Both clamped and pinned arches are considered. In addition, results for complete
rings can be deduced from the present results by considering semi-circular arches. One
interesting phenomenon that then arises is the transition from the stable postbuckling
behavior of rings to the instability of steeper arches.

129



130 CLIVE 1. DYM

The critical pressures and postbuckling coefficients are also compared to results
obtained using the shallow arch kinematic relations. Good agreement is demonstrated for
moderately steep arches.

The basic kinematic relations, differential equations and postbuckling relations are
developed and displayed in the text. Some of the details of the buckling eigenvalue prob­
lems and of the various kinematic solutions are given in the Appendices.

2. BASIC EQUATIONS

Two sets of kinematic relations will be used to describe the arch behavior. The first is
a subset of the nonlinear shell equations of Sanders [14] and is referred to as the set of full
nonlinear ring equations (FNR). The second set represents a modification in the curvature
change to a fairly common form, and is referred to as the set of modified curvature ring
equations (MCR). The constitutive relations are common to both sets of ring equations
and are

1
N = -(e+tx2

)
H

M=K

(la)

(lb)

where Nand M are dimensionless stress and moment resultants, e and X are the linear
in-plane strain and the rotation and K is the curvature change. When expressed in terms
of the tangential displacement v and the radial displacement w these kinematic quantities
take the forms

FNR: e = v'-w,

MCR: e = v'-w,

X = w'+v,

X = w'+v,

K = -x'
K= -(w"+w).

(2a)

(2b)

The primes denote differentiation with respect to the arch coordinate cP, which along with
the displacements has been nondiinensionalized with respect to the arch radius R, while
the stress and moment resultants have been rendered dimensionless by dividing by (EI/R 2

)

and (EI/R), respectively. This results in a thickness ratio (compressibility parameter) being
introduced in equation (la), i.e.

H = 112(~r
Further, a dimensionless (uniform) applied pressure p will be defined as

qR 3

p = EI

where q is the load (uniform here)/unit length of arch.
A variational (virtual work) statement of the problem can be given as

f~ [N<5e+Nx<5x+M<5K-p<5w]dcP = o.

Equation (5) is the starting point for the Budiansky-Hutchinson formalism.

(3)

(4)

(5)
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The exact nonlinear differential equations that are the Euler-Lagrange equations of the
variational statement (5) are:

and

N'-NX- M' = °
FNR:

-N -(NX)' -M" = P

N'-NX = °
MeR:

-N-(Nx)'-M"-M = p.

(6a)

(6b)

For clamped and pinned arches the corresponding boundary conditions are, respectively,

and

v = W = w' = ° at 4> = ±IX

v = w = ° and M = K = ° at 4> = ± IX.

3. BUCKLING AND POSTBUCKLING

(7a)

(7b)

In this section the initial postbuckling "load--deflection" relation of the arch will be
given, following the asymptotic analysis outlined in the very lucid exposition of Budiansky
[13]. Only asymmetric buckling of "steeper" arches is considered here since for very
shallow arches symmetric snap-through buckling can take place at lower pressures.
However, this snap type of buckling cannot be analyzed with the Koiter theory.

The following expansions are introduced:

(8)

K = pKo+eK t +e2 K 2 + .

N = -No+eN t +e2N 2 + .

M = Mo+eM t +e2 M 2 + .

Here e is a small parameter such that when e - 0, then p - Pen the bifurcation buckling
pressure. The quantity Xo shall be henceforth taken as zero, with K o =I- 0, so that a linear
prebuckling state that includes bending is assumed. The effect of bending in the pre­
buckling state can thus be assessed. A uniform membrane state can be obtained, prior to
buckling, by requiring K o = 0, as must be done for the FNR equations.

If the expansions (8) are introduced into the nonlinear differential equations (6), the
equations governing the prebuckling, buckling and postbuckling deformation are easily
sorted out. These equations are:
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Prebucklingt
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FNR: N~ = (p)' = 0.

MCR: N~ '= (pljJ)' = 0, M~+Mo-No = -P

(9a)

(9b)

Buckling
FNR: N'l +PerXI-M'1 = 0,

MCR: N'l +ljJPerXI = 0,

M'{ +N I -Perx'l = 0. (lOa)

(lOb)

Postbuckling
M~+N2-PerX~ = -(NIXd'·

N~ + PerljJX2 = N IXI
MCR:

(lla)

(lIb)

It can be further shown (see Refs. [13, 17]) that the asymptotic expansions (8), when
introduced into the variational statement (5), imply a load-deflection relati:mship of the
form

where

~ = I + ae + be2 + ...
Per

(12)

(13a)

b = _1_r_J2N IXIX2+ N 2Xi]d¢ = _1_S~a[2eIXIX2+(e2+hi)xi]d¢

ljJPer S~aXi d¢ HljJPer S~aXi d¢
(13b)

and where Per is defined either as the lowest eigenvalue of equations (10) or by the cor­
responding Rayleigh quotient:

(14)

Recall that according to this theory, if a #- 0, then the structure will be in an unstable
state in the postbuckling range and it will also be imperfection sensitive. If a = 0, b #- 0,
then the postbuckling stability and the imperfection sensitivity vary as the arithmetic sign
of b.

In the present result it appears at first glance that the existence of a stable or unstable
equilibrium state in the postbuckling range depends on whether or not inextensibility is
assumed. For from equation (l3a), if N l(¢) is non-zero, then the coefficient a might be.
However, it seems rather clear that for asymmetric buckling, the membrane stress resultant
due to buckling must itself be an odd function of ¢ and hence a '= 0. It is also arguable

t In equation (9b) a parameter tjJ is introduced that reflects the presence of the linear bending approximation
to the prebuckling state.
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that since the pressure-loaded arch is a symmetrical structure which bifurcates asym­
metrically, the coefficient a must be zero.

Details of the solutions of equations (9Hll) and of evaluation of the coefficients (13)
are given in the Appendices.

4. NUMERICAL RESULTS

The numerical results for the critical buckling pressures and for the postbuckling co­
efficient b are displayed in Tables 1-7. Details of the solution are given in the Appendices.

The critical pressures (Tables 1, 2) appear to be almost completely insensitive to com­
pressibility (H) and to the bending (MCR) or membrane (FNR) nature of the prebuckling
solution. In fact, the results are not significantly different from results reported for in­
extensional buckling based upon a membrane prebuckling state [1, 3]. Further, if the
parameter H is set to zero, the eigenvalue problems (A.4, A.S, 8.9, 8.10) reduce to the
transcendental equations of Chwalla and Kollbrunner [1].

The magnitude of the bending in the prebuckling state can be further assessed by
noting that the bending moment is proportional to p(I-I/J).t Some typical values of the
parameter l/J are displayed in Table 3. These results clearly indicate the smallness of the
bending resultant. After buckling, the only effect of l/J is through its (negligible) effect on Pcr'

TABLE I. CRITICAL BUCKLING PRESSURES FOR PINNED ARCHES

FNR p" MCR
(X

(deg.) h/R = 1/10 h/R = 1/1000 h/R = 1/10 h/R = 1/1000

90 3·26923 3·27124 3·27053 3·27125
80 4·51287 4·51449 4·51359 4·51449
70 6·21586 6·21707 6·21752 6·21707
60 8·72629 8·72712 8·73700 8·72712
50 12·78071 12·78124 12·83972 12·78125
40 20·14096 20·14128 20·46900 20·14131

TABLE 2. CRITICAL BUCKLING PRESSURES FOR CLAMPED ARCHES

IX

(deg.)

90
80
70
60
50
40

FNR p" MCR

h/R = 1/10 h/R = 1/1000 h/R = 1/10 h/R = 1/1000

9.00000 9·00000 9·03207 9·00000
1l·33095 1l·33135 11·40456 11·33136
14·61636 14·61805 14·79662 14·61806
19·58254 19·58671 20·07098 19·58676
27·73864 27·74726 29·27890 27·74742
42·68493 42·70190 48·80510 42·70251

t See equation (B.2~
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TABLE 3. BENDING PARAMETER FOR PREBUCKLING SOLUTION (MCR): Mo - p(l-i/J)

Pinned i/J Clamped
IX

(deg.) h/R = 1/10 h/R = 1/1000 h/R = 1/10 h/R = 1/1000

90 1·000000 1·000000 0·995620 1·000000
80 0·999927 1·000000 0·992719 0·999999
70 0·999562 1·000000 0·986995 0·999999
60 0·998397 1·000000 0·974852 0·999997
50 0·994872 0·999999 0·946604 0·999994
40 0·983332 0·999998 0·873872 0·999986

Typical results for the postbuckling coefficient b are shown in Tables 4 and 5. Recall
that a positive coefficient denotes stability and a negative coefficient instability in the
early postbuckling behavior. It is immediately clear that the coefficients are relatively
insensitive to the effect of compressibility.t It may also be noted that for the clamped
arches (Table 5) the values of the postbuckling coefficients are very close, when both arch
theories are compared.

Perhaps the most interesting results are the values of the postbuckling coefficients for
the pinned arches (Table 4). There is clearly a transition, as the arch becomes progressively
steeper, from unstable to stable postbuckling behavior. This represents a transition from

TABLE 4. POSTBUCKLING COEFFICIENTS FOR PINNED ARCHES

IX

(deg.)

90
80
70
60
50
40

FNR b MCR

h/R = 1/10 h/R = 1/1000 h/R = 1/10 hlR = 1/1000

1·019302 1·011415 0·211386 0·211430
0·386367 0·381016 -0·232681 -0·229784

-0·484773 -0-484626 -1·227794 -1·212972
-2·210659 -2·184584 -3-414991 - 3·350614
-6·556133 -6·370323 - 8·719322 -8·407426

-20·298221 -18·804925 -24·564979 - 22·521435

TABLE 5. POSTBUCKLING COEFFICIENTS FOR CLAMPED ARCHES

IX

(deg.)

90
80
70
60
50
40

FNR b MCR

h/R = 1/10 h/R = 1/1000 h/R = 1/10 h/R = 1/1000

-0·575536 -0·571700 -0·451288 -0·446700
-1·204257 -1·190227 -1·230642 -1·211721
-2·446248 -2·396215 -2·723509 -2·657893
- 5·194701 -4·993075 - 5·878286 -5·629916

-12·307776 -11·294352 -13·719296 -12·546408
-36·999547 -29·413727 -40·114950 - 31·784643

t It is also seen that the coefficients are all of order unity. This is due to normalizing the maximum physical
deflection to equal the radius. If the normalization were with respect to the thickness, each coefficient would be
multiplied by (h/R)2. See also Koiter's elastica analysis (Ref. [10], Section 613).
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steep arch unstable bifurcation (see, for example, Schreyer and Masur [15]) to the stable
postbuckling behavior of complete rings [5, 6]. That is, the behavior of a ring may be
analyzed by considering a pinned semi-circular (0:: = n/2) arch [4]. It is also of interest to
note that for the pinned arches, the different arch theories produced quantitatively dif­
ferent results (although qualitatively the results are the same). This can be seen from the
difference in the values of the coefficients, and also by noting a difference in the transition
angle. The transition from unstable to stable behavior occurs at 0:: ~ 75° for the FNR
solution, and at 0:: ~ 84° for the MCR solution.

The question of why these two arch theories produce very good agreement for the
clamped arches and show discrepancies for the pinned arches may be answered by exam­
ining the boundary conditions. First, by inspection of equations (A.6), (A.7) and (B.11),
(B.12), a considerable degree of similarity is observed in the displacement solutions to the
two problems, and, in fact, the numerical values of the particular solution constants for
the second order solution (C i , Ci +4) are in very good agreement. The D j are determined
by satisfaction of the boundary conditions, whose formulation for the clamped case is
identical [equations (7a)].

For the pinned case, the stress boundary condition takes the forms

FNR: w7 +v; = 0

MCR: w;'+w; = 0
(15)

for the ith order solution. The definition of the linear in-plane strain ei [equation (2a)]
may be used to modify, for example, the first of equations (15) to yield:

FNR: w;'+wi+ei = O. (16)

Some relevant orders of magnitude---discernible from detailed examination of the dis­
placement coefficients-of the ei are given in the Appendices. Since the displacements are
of order unity, and since the buckling in-plane strain e 1 is of order H, it is seen that the
buckling stress boundary condition is virtually the same for both theories. For the second
order problem, however, ez is of order unity, and thus there is a significant difference in
the boundary conditions, therefore, in the constants Di , and so in the postbuckling
coefficients.

Tables 6and 7 illustrate a comparison ofsome ofthe present results (MCR, h/R = 1/1000)
with results obtained in a parallel investigation using shallow arch theory. In Ref. [16] it
is shown that the critical pressures are given by

Pinned: Pcr= (~r(I+8~2rl (~r[I-8~2+(8~2r+··.J

Clamped: Pcr = (1-43~r (1 + :;2r 1 = ( 1.43~) ll-:;2 + (:;2r + .. .J
and the postbuckling coefficients are

(17)

3(R/h)2
Pinned: b = [1-,1.1/1.90]

1·61(R/h)2
Clamped: b = [1-).2/5.02]

3(1.90)[ 1·90 (1.90) 2 ]
-~ l+y + Y + ...

(1.61)(5.02)[ 5·02 (5.02)2 ]
- 0::4 l+ y + Y + ...

(18)
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TABLE 6. COMPARISON OF CRITICAL LOADS FROM SHALLOW ARCH ANALYSIS

p"

Pinned Clamped

CL

(deg.) MCR Shallow MCR Shallow

90 3·27 4·00 9·00 8·19
80 4·51 5·06 11·33 10·35
70 6·22 6·61 14·62 13-52
60 8·73 9·00 19·59 18·40
50 12·78 12·96 27·75 26·55
40 20·14 20·25 42·70 41·45

TABLE 7. COMPARISON OF POSTBUCKLING COEFFICIENTS FROM SHALLOW ARCH ANALYSIS

b

Pinned Clamped

CL

(deg.) MCR Shallow MCR Shallow

90 +0·211 -0·933 -0·447 -1·33
80 -0·230 -1·50 -1·212 -2·14
70 -1·213 -2·54 -2·658 3·72
60 -3·350 -4·71 -5·630 -6·71
50 -8·407 -9·80 -12·546 - 13-92
40 -22·521 -24·0 - 31·785 -34·2

where A. = (X2(R/h) is the arch rise parameter introduced by Schreyer and Masur [15]. The
numerical values displayed in Tables 6, 7 represent the leading terms in the expansions (17)
and (18). The agreement for both the critical pressures and the postbuckling coefficients
is seen to be reasonably good over the middle range of steep arches, i.e 40° < (X < 60°.
Of course, as mentioned earlier, the present analyses do not deal with symmetric snap­
through, and so the discussion of when an arch is shallow enough for snap-through to
govern is not dealt with (see Refs. [16, 3]).

S. CONCLUSIONS

This paper has presented a study of the buckling and postbuckling behavior of steep,
compressible, circular arches. It has been shown that the effect of bending in the pre­
buckling state and of compressibility is minimal. The postbuckling behavior of clamped
arches has been shown to be unstable for the complete range ofarch vertex examples con­
sidered. The pinned arch results demonstrate a transition from instability to the stability
characteristic of complete rings as the arch semi-vertex angle approaches ninety degrees.
The results found were essentially the same for both arch theories used, with some slight
quantitative differences in the postbuckling behavior of the pinned arches. Finally, good
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correlation with corresponding shallow arch results has been indicated for the expected
range of agreement.
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APPENDIX A

The procedure for obtaining the solutions is straightforward:
1. Integration of equations (9) to obtain the prebuckling solution.
2. Integration of equations (10) to obtain the buckling solution.
3. Formulation of the eigenvalue problems for the pinned and clamped arch critical

pressures.
4. Normalization ofthe buckling mode so that the maximum radial displacement (dimen­

sionless) is unity.
5. Integration of equations (11) to obtain the second order solution.
6. Evaluation (analytical) of the integrals in equation (13).
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A digital computer was used to solve the transcendental equation for the eigenvalues,
to obtain the normalized buckling displacement coefficients, to solve the linear algebraic
equations to satisfy the boundary conditions for the second order solution, and to obtain
numerical results from the analytical integrations of the integrals in equation (13).

FN R solut ions

A.1 Prebuckling.

No = p,

A.2 Buckling.

Mo = 0, eo = -H, W o = H, Vo = O. (A.1)

(A.2)

(A.3)

where

(A.4)

For pinned arches the eigenvalues are determined as the roots of

(1 +Q) sin 2 ct
p. tan p.ct =(1 +2Q _ p.2Q) sin ct cos ct + ct( 1_ p.2)

while for clamped arches

(A.5)
(1 + p.2Q) sin ct cos ct - ct(l- p.2)

P. tan WI. = (1 ) 2+Q cos ct

The Ai above are determined from two of the homogeneous equations leading to the
eigenvalue problem and by stipulating that the maximum buckling displacement (dimen­
sionless) shall be equal to unity.

A.3 Second order solution.

4

W2 = Dl cos p.4> +D2 cos 4> + D34> sin 4> + Co + L C i cos Pi4> (A.6)
i= 1

where PI = 2, P2 = 2p., P3 = 1+ p., P4 = 1-p.. The Ck are determined for the particular
solution and the Dk represent the complementary terms which are determined by satis­
faction of boundary conditions.

The following order of magnitude relations are of interest, and are derivable from the
details of the first and second order solutions:

e2 + hi = O(H).

e l = O(H),

e2 = 0(1),

Xl = 0(1), X2 = 0(1)
(A.8)
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APPENDIX B

MeR solutions

B.1 Prebuckling-pinned.

[
(IX sin IX - 2 cos IX) cos 4> 4> sin 4>J

W -(1-l/!) 1+ ---
o - 2 cos2 IX 2 cos IX

139

(B.1)

No =pl/!,
[

COS ¢JM o = -p(l-l/!) 1---
cos IX

(B.2)

e [( 21X cos
2

IX ) J - 1l/!=-.-Q= l+H .
H 1X(1 + 2 cos2 IX) - 3 sin IX cos IX

(B.3)

B.2 Prebuckling-clamped.

wo =(l-l/!{l
(IX cos IX + sin IX) ~os ¢ + (sin IX)¢ sin ¢J

IX + sm IX cos IX
(B.4)

No = pl/!, )[ 2 sin IX JM = - 1- 1
o P( l/! IX+ sin IX cos IX

(B.5)

eo [ ( 1X
2

+1X sin IX cos IX )J-l
l/! = - H = 1+ H -1X"2+-IX-s-=-in-lX-co-S-IX-----=2-s-=-in--;;2;--1X

B.3 Buckling.

(B.6)

Wi = A 1 sinjl¢+A2sin¢+A3¢cos¢ (B.7)

1-H(jl2-1) _
Vi = A 1 cosjl¢+(QA 3 -A2)cos¢+A 3¢sin¢ (B.8)

jl

where

For pinned arches the eigenvalues are determined as the roots of

(B.9)

while for clamped arches

(B.10)

The Ai above are determined from two of the homogeneous equations leading to the
eigenvalue problem and by stipulating that the maximum buckling displacement (dimen­
sionless) shall be equal to unity.
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B.4 Second order solution.

CLIVE L. DYM

4

W z = D1 cos Jl4J +Dz cos 4J+D3 4J sin 4J+eo + L CiCOSPi4J
;=1

(B.11)

where PI = 2f.l, pz = 2, P3 = f.l+ 1, P4 = f.l-l. The Ck are determined for the particular
solution and the Dk represent the complementary terms which are determined by satis­
faction of boundary conditions.

The order of magnitude relations of the FNR solution are also found to hold for the
MeR solution, i.e.

e1 = O(H),

ez = 0(1).

Xl = 0(1), Xz = 0(1)
(B.13)

(Received 20 August 1971; revised 15 June 1972)

A6CTpaKT-l1ccJIe.qyeTcJI JIHHHJI 6HlPypKaUHH B npouecce BbmY'lHBaHl1l1 H nOBe.qeHlle nocne BbmY'lHBaHlIll

.qJIJI KpyTblx, ClICHMaeMbIX, Kpyrnblx apOK. APKII HarpYlKeHHble pasHoMepHblM nOCTOllHHblM HanpaBJIeHHblM

.qaBJIeHHeM. OHH MoryT 6bITb KaIC llIapHllpHble TaK H 1aAeJIaHHble. Pa3pa60TKa 3aAa'!H npHBOAHTCJI Ha

OCHose TeopHH KoATepa. I1CnOJIb1YlOTClI ,lI,Be pa3Hbie TeopHH apOK, C ueJIblO HcnpaBneHHlI HCCJIeAOBaHHlI

3lPclleKTa H3rll6a nepeA Ha'laJIOM Bbmy'lIlSaHIIJI. OKa3b1BaeTCll 'ITO 3a,lI,eJIaHHble apKII scerAa HeYCTOH'lHBbl

nOCJIe 6H!jJYPKaUIIH, no cpaSHeHHIO C llIapHllpHblMII, KOTopble npeBpal.l.\alOTClI 111 nOBe,lI,eHHlI HeYCTOH'IHSOro

K YCToA'lIiBOMY, eCJIIi apKa npll6nlllKaeTCll K nonYKpymolL CpaBHHBaIOTCJI, TaKlKe, pe3YJlbTaTbi C pe3YJIb­

TaTaMII, nOJIY'leHHbIMII 113 Teopllll nonoroA apKII. CpaBHeHHe, no paccylK/l:eHHIO, xopollioe AJIJI yMepeHHO

KPYTblX apOK. 3cP!jJeKT paCTJllICHMOCTH HJIH ClICHMaeMOCTH Cpe,lI,HHHOH nOBepXIWCTH H H3rH6a nepeA sbmy'I­

HBalHleM llBlUleTCli !jJaKTH'IeCKH He06HapyllCeHHblli.


